Mitochondrial Function in Muscle Stem Cell Fates

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfabricated platform for studying stem cell fates.

Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time-consuming. Thus, to investigate low-frequency events of interest, large sample sizes must be interrogated. We report a simple, versatile, and effic...

متن کامل

Generation of different fates from multipotent muscle stem cells.

Although neuronal and mesenchymal stem cells exhibit multipotentiality, this property has not previously been demonstrated for muscle stem cells. We now show that muscle satellite cells of adult mice are able to differentiate into osteoblasts, adipocytes and myotubes. Undifferentiated muscle progenitor cells derived from a single satellite cell co-expressed multiple determination genes includin...

متن کامل

Mitochondrial function provides instructive signals for activation-induced B-cell fates

During immune reactions, functionally distinct B-cell subsets are generated by stochastic processes, including class-switch recombination (CSR) and plasma cell differentiation (PCD). In this study, we show a strong association between individual B-cell fates and mitochondrial functions. CSR occurs specifically in activated B cells with increased mitochondrial mass and membrane potential, which ...

متن کامل

Perturbation of single hematopoietic stem cell fates in artificial niches.

Hematopoietic stem cells (HSCs) are capable of extensive self-renewal in vivo and are successfully employed clinically to treat hematopoietic malignancies, yet are in limited supply as in culture this self-renewal capacity is lost. Using an approach at the interface of stem cell biology and bioengineering, here we describe a novel platform of hydrogel microwell arrays for assessing the effects ...

متن کامل

Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells.

Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; theref...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Cell and Developmental Biology

سال: 2020

ISSN: 2296-634X

DOI: 10.3389/fcell.2020.00480